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ABSTRACT 

We show t h a t  cer ta in  discrete subgroups  of semis imple  Lie groups  sat isfy 

rigidity proper t ies  and  t h a t  a subclass  of  these  discrete groups  are  ac tual ly  

of finite covolume. 

We show in this note that certain discrete subgroups of semisimple Lie groups 

behave like lattices i.e., are rigid subgroups, although it is not clear, a priori, 
that these are lattices. (See Theorem 1.) Using this rigidity, we show also that 

in many cases, these discrete subgroups are actually lattices (see Theorem 2). 
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(0.1) DEFINITIONS AND NOTATIONS. Let A be a subgroup of a connected Lie 

group H. Suppose G t is an absolutely simple group defined over a local field k 

of characteristic 0. 

Definition: A homomorphism p: A ~ G'(k) is good  if p(A) is Zariski dense in 

G' and if p(A) is not contained in a compact subgroup of G'(k). 
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Definition: The subgroup A is super - r ig id  in H if every good homomorphism 

p: A ~ G'(k) extends to a continuous homomorphism ~fi: H --~ G'(k). 

For example, (Theorem 2) of [Margulis 1] says that if A is an irreducible lattice 

in a real semisimple connected Lie group H of real rank _ 2 with no compact 

factors, then A is super-rigid in H. 

THEOREM 1 : Let A be an irreducible lattice in a connected linear real semisimple 

Lie group G without compact factors and of real real rank _> 2. Let F be a Zariski 

dense discrete subgroup of G x G whose intersection with the diagonal subgroup 

G contains A. Then F is a super-rigid subgroup of G x G. 

THEOREM 2: Let A be an irreducible lattice in a cannected linear real semisimple 

Lie group G whose real rank >_ 2 and which has no compact factors. Suppose 

G / A is not compact. Let F C G x G be a Zariski dense discrete subgroup whose 

intersection with the diagonal G contains A. Then the subgroup F is a lattice in 

G × G .  

1. R ig id i ty  

(1.1) Proof of Theorem 1: Let p: F -~ G'(k) be a good representation. Since 

p(F) is not contained in a compact subgroup of G~(k), it follows, by [3], that G ~ 

is isotropic over k, and by [2], Corollaire (4.17), G t contains a minimal parabolic 

k-subgroup Pq Let P denote the space of probability measures on the compact 

Hausdorff space G'(k)/P'(k).  Fix a minimal real parabolic subgroup P of G. 

Then by a lemma of Furstenberg (see [9], Chapter 2) there exists a F-equivariant 

measurable map ~: G/P× G/P  ~ "P. Since A acts ergodically on G / P x  G/P (see 

[9], Proposition (5.19)), it follows that F acts ergodically on G/P × G/P. On the 

other hand, G'(k) acts smoothly on 7) (see [9], Corollary (3.2.12)). It follows from 

well known considerations that the image of ~ is contained in a G~(k)-orbit on P. 

We get thus a closed subgroup H' of G'(k) such that ~: G/P × G/P  ~ G'(k)/H'. 

We claim that k is archimedean. Indeed, suppose k is not archimedean. It is 

known that finite dimensional linear representations of A are completely reducible 

([5], Ch. (7), Theorem (6.17)). It then follows from super rigidity of A in G (see 

Theorem 2 of [4]) that  p(A) is contained in a compact subgroup C of G'(k). Let 

{Cn} be a sequence of compact open subgroups of C decreasing to {1} and let 
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An = p- l (cn)  Yl A. It is clear that An has finite index in A and is therefore 

a lattice in G and acts ergodically on G/P  x G/P. Being compact, Cn acts 

smoothly on G'(k)/H'. Therefore the image of ~ is contained in an orbit On of 

Cn for every n, with O1 D 02 D 03 D 04 D -.-. Since N O,~ is a point, we get 

Im(~)  is a point, i.e. Im(~)  = # for some # C ;o. Moreover, p(F) is contained in 

the isotropy of #. But Proposition (3.2.15) of [9] shows that  the isotropy of # is 

either a compact subgroup of G'(k) or else is contained in a proper k-subgroup 

of G'(k). Therefore p(F) is either contained in a compact subgroup of G~(k) or 

is contained in a proper k-subgroup of G'(k), contradicting the hypothesis that  

p: F -* G'(k) is good. Therefore k is archimedean. 

Let G" be the Zariski closure of p(A) in G~(k). By replacing A by a subgroup 

of finite index, we may assume that G" (k) is connected. Write G" (k) = A.B, 

where B is the maximal compact normal subgroup of G" (k) and A is normal 

semisimple subgroup of G" (k) without compact factors with B N A being the 

center of A. The ergodicity of A-action on G/P  x G /P  implies that  the image 

of ~ is contained in an orbit O of G"(k) in G'(k)/H'. Let A\O denote the 

quotient of O by A, ~r: O ~ A\O the projection map, ~: G / P  x G / P  ~ A\O the 

composite ~r o ~. The group B / B  A A acts on A\O and hence p(A) acts on A\O 

and ~: G / P x G / P -~ A \ O is A-equivariant. 

We claim that ~ is constant. Let S be a maximal split real torus in P,  let 

p0 be the parabolic subgroup of G containing S and opposed to P,  let w be 

the element of the Weyl group Nc(S) /Zc (S )  which conjugates P into p0. The 

map g --~ (g P, gw P ) into G / P x G / P maps G / Zc( S) isomorphically onto an open 

subset of G/P x G/P  whose complement has zero measure. We may assume then 

that ~: G/Zc(S)  ~ B/Bo, where B0 is a closed subgroup of B. We will show 

that ~ coincide with homomorphisms on the centralizers of singular elements of 

S into B: let ¢(G,  P, S) denote the root system of the triple (G, P, S), let gP+ 

be the set of positive roots, fix a E q~+ and let s E S be an element such that  

~(s) = 1 (there exists such an s C S since R - rank(G) > 2). For each g E G, 

we get a map from Zc(s) into B/Bo given by ~g(z) = -~(gz) for z E ZG(s). We 

therefore get a map (where (s) denotes the group generated by S) 

e l ( s )  ---+ B/Bo) 

(g G) 

where ~ denotes the space of measurable maps from Z(s) into B/Bo (see [4], §3 
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for details). From the methods of [4], §3, it follows that ~gz = hg(z)~g [where 

hg is a continuous homomorphism from Z(s) onto K, with K a quotient of a 

subgroup of B] for almost all g e G and z E Ze(s).  Let u C U~(k). Since Z(s) is 

reductive ([2]) and u E U~ C Z(s), it follows by the Jacobson-Morozov theorem 

that  there exists a continuous homomorphism 0: SL2(R) --* Z(s) such that (11) 
0 0 1 = u. Now hg o0 (SL2(R)) is contained in the compact group K; using 

the fact (which is easy to prove) that  there are no continuous homomorphisms 

from SL2(R) into a compact group K,  we see that hg o 0 = trivial i.e. hg(u ) = 1 

if u E U~, with U~ denoting the unipotent subgroup of U corresponding to the 

root ~. This shows that -~(9u) = ~(g) for all u E U and similarly -~(gv) = -~(g) 

for all v E U-  (U-  is the opposite of U) i.e., ~ is constant. 

We may then assume that ~o: G / P  x G /P  ~ A/Ao where A = A/Z(A)  and Ao 

is a closed subgroup of A. Since A is a product of absolutely simple groups, the 

super-rigidity of A in G implies that the homomorphism Pl: A ~ G" (k ) /B  = -A 

extends to a homomorphism Pl: G ~ A. The map ~: G/Za(S)  --* A/Ao is A- 

equivariant and thus the map ~: G -~ A/Ao given by ~(g) = ~ l (g) - l~(g)  is A- 

invariant on the left and ZG(S)-equivariant on the right. Thus, ~: A \ G  ~ A/Ao 

and Im(~)  is contained in an S-orbit in A/Ao (since S acts ergodically on A \ G  

and smoothly on A/Ao),  which has a finite S-invariant measure on it. But an 

S-orbit in A/Ao is an algebraic group which is a split real torus, and since it has 

finite Haar-measure, it must be a point, and ~ is constant: ~(g) = p. 

This shows that ~(g) = "fil(g)~(g) = "fi(g) is a rational map from G / P  × 

G / P  ---* G'(k)/H' .  From standard considerations (see [9], (5.1.3)) it follows that 

p: F ~ G'(k) extends to "ill: G ---* G~(k). The proof of Theorem 1 is now complete. 

(1.3) NOTATION AND REMARKS. Suppose A1 and A2 are subgroups of a group 

A. We say that A1 -< A2 if A1/A1 N A2 is finite. We write A1 ~ A2 if A1 -< A2 

and A2 -~ A1. We write A1 ~ A2 if A1 -< A2 is true but A2 -< AI is not true. 

The arithmeticity theorem (Theorem 1 of [9]) says the following: if A is an 

irreducible lattice in a connected linear semisimple group G without compact 

factors of real rank _> 2, then A is arithmetic, i.e., there exist (i) a semisimple 

algebraic group H defined over a number field K (ii) a surjection zr: H ( K  ®Q 

R) --* G with compact kernel such that if OK denotes the ring of integers in K 

and equalities are understood in the above sense, then A ~ zc[H(OK)]. 

Let S be the set of archimedean valuations v of K such that  H(Kv)  is non- 
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compact. Then 

G =  H H(Kv) 
~,ES 

In fact the proof of arithmeticity from super-rigidity in [4] shows the following: 

Let A, F be as in Theorem 1. Then F is contained in an arithmetic subgroup A 

of G x G since F is super-rigid. For details, see [7]. 

(1.4) LEMMA: Let G, H, K and ~r be as in (1.3). Let A be an arithmetic lattice 

in G x G which intersects the diagonal G in A .~ r [H(OK)]. Then A satis/~es 

one of the following two conditions: 

(1) h..~ A × A 

(2) there exists a real quadratic extension L of K (i.e. L such that every place 

of L lying over a real place of K is real) so that the map 

~r x ~r: H ( L ® R )  = H ( K  @ R) x H ( K  ® R) -+ G x G 

has compact kernel with A ,~ (~ × rc)[H(OL)] ~- ~r[H(OK)] ,~ A. 

Proof: By assumption, there exists a semisimple (centreless) group G defined 

over Q such that G(R) = G x G x U where U is a compact group, and if 

pr: G(R) --~ G x G denotes the projection map, then A ~ pr[9(Z)]. Let Af be 

the Zariski closure of U M 9(Q) in 9. Then Af is normal in 9 and 9(R)/Af(R)  is 

again of the form G x G x V  where V is a compact group, and ifpr : 9(R)/Af(R) 

G x G denotes the projection map, then pr [(9/Af)(Z)] ~ A. We may therefore 

assume that Af is trivial i.e. UMg(Q) = {1}. In that  case, A ~ pr[9(Z)] because 

9(Z) M ker (pr) C 9(Q) N U = {1}. 

Let 7-/be the Zariski closure of p r - l (A)  N 9(Z) in 9. Then pr (~(R))  is the 

diagonal in G × G by the Borel density theorem applied to A in the diagonal G. 

Using this, it is easy to show that  7 / i s  a semisimple group. 7-I is obviously 

defined over Q. We have 

~ (Z)  ~ A ~ H(OK) and ?{(Q) ~ H(K)  since 

7-/(Q) M Ker (pr) C 9(Q) M U = {1}. 

We have, as in (1.3), a finite set J and for j E J,  number fields Lj 

and an absolutely simple group 9i over Lj such that A ~ 1-Ij Gj(OLj) and 

1-Ij Gj(Lj @ R) = ~(R).  The fact that V M G(Q) = {1} implies (since Gj(OL~) 
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is finite if and only if Gj(Lj ® R) is compact) that  each Gj(OLj) is infinite. 

Moreover, H(K) ..~ ~/(Q) c G(Q) = HjGj(Lj). 

Since Gj(OLj) is infinite, Gj(Lj ®Q R) is not compact. But the projection 

of A to any noncompact factor of G x G is nontrivial and therefore A projects 

nontrivially into Gj(OLj) under the map pj: G(Q) ~ II,ejG~(L~ ) ~ Gj(Lj). 

This shows that pj: H(K) ~_ 7-/(Q) ~ Gj(Lj) is a nontrivial homomorphism 

induced by a morphism ~j: ~ ~ RL~/Q(Gj) of Q groups. We note that 7-/ 

and Gj are absolutely simple groups. It follows that the morphism pj is of the 

form pj o aj where aj: K ~ Lj is a field homomorphism and pj: 7-/ ~ Gj is 

a morphism of absolutely simple groups defined over Lj. Being non-trivial, pj 

is an isomorphism. Thus we may assume that Lj ~ K and Gj = H ®K Lj for 

every j .  

Let ~-~j denote the set of archemedian places of Lj and for w • Lj, let Lj,w to 

the completion of Lj at w. Let Sj = {w • ~ j  : Gj(Lj,~) is not compact }. If S 

is as in (1.3), v • S, w • )-~j and w/v, then Gj(Lj,~) = H(Lj,w) ~ H(K~) and 

hence w • Sj. 

Then the equalities 

C × G × V = ~ ( a )  = l-[ G~(Lj ® R) = l-[ l-I  G(Lj,~) 
j j wEE~ 

show that  

(,) c × G -- 1] [ I  cj(Lj, ) II  II  H(Lj 
j wESj j yES 

holds. Let dimR(G) and dim(H) denote respectively, the dimension of G as a 

real group and the dimension of H as an algebraic group. Then from (*) we 

obtain, 

2dimR(G) = dimR(G × G) >_ E E [Lj: g][Kv: R]dim (H) 
j yes 

and since G = l ives  H(K~), we obtain 

2 dimR(G) _> E[Lj :  g]  dimR(G). 
J 

In particular card (J) _< 2 and [Lj: K] _< 2. 

(1) If card (J) = 2, then Lj = g for every j and h ~ IIiejg(OLj) .~ H(OK) x 

H(OK). 
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(2) If card (J) = 1, J = {j}, then L j / K  is a quadratic extension and A 

H(OLj). Now (*) asserts the (**) G x G = II~esH(L j ®K K,).  

By looking at the number of complex simple groups which are factors of either 

side of (**), we obtain that L j / K  is a real quadratic extension. The Lemma is 

proved. 

We show however, in the next section, that if G/A  is not compact, then F ~ A 

even in case (2). 

2. F in i t eness  of  vo lume  

(2.1) PROPOSITION: Let H be an absolutely almost simple group defined and 

isotropic over a number field K, let L / K  be a real quadratic extension of K. Let 

F be a subgroup of H(OL) such that F N H(OK) has finite index in H(OK) and 

infinite index in F. Then F has finite index in H(OL). 

Proof: In the notation of (1.3), we must show that if H(OK) ~ F and F -< H(OL), 

then F = H(OL). We note a few preliminary results. 

(2.2) LEMMA: Let Q be a minimal parabolic subgroup of H defined over K. 

Let V and V -  denote the unipotent radicals of Q and Q-,  where Q-  is a 

parabolic K-subgroup of H opposed to Q. Then the group generated by V ( NOL ) 

and V- (NOL)  has finite index in H(OL), where V(NOL) = (v E V(OL);V -- 

1 (rood N)} and V- (NOL)  is defined similarly. 

For a proof, see [6] for K-rank (H) k 2 and [81 for K-rank (H) = 1. 

Lemma (2.2) coupled with the Zariski density of Y in H, shows that  to prove 

(2.1), it is enough to show that  V(OL) -< F. 

(2.3) LEMMA: Let S be a maximal K-split torus in Q, let ~( H, Q, S) denote the 

root system of the triple (H, Q, S), let ¢+ (resp. A) be the set of positive (resp. 

simple) roots, let k • [Na(S)/Za(S)](K) be such that we have k(~ +) = - ¢ +  

(then k(A) = - A ) .  Let So = {t • S; we have a(t) =- fl(t) [or all a, fl • A}. 

Then 

(i) So is a one-dimensional split torus over K, normalized by k, 

(ii) ifqo: Gm ~ So is an isomorphism suitably chosen, then a(~(t)) = t for all 

t • G m and a • A. 

The proof of this lemma is trivial and we omit it. 
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We now consider the group R = SoV. Pick and element 7 • F such that  (i) 

7-16(7) and 6(7)-17 do not lie in a proper parabolic subgroup of H containing 

Q (ii) 7-~6(7) lies in the big Bruhat cell VkQ, where 6 is a generator of Aut 

(L /K)  which then acts on H(L). For this 7, we can easily see using the Bruhat 

decomposition that 7R7 -1 n 6(7)R6(7) -1 is a one-dimensional torus T defined 

over K. 

(2.4) LEMMA: The torus T is anisotropic over K. 

Proo[: Suppose T is isomorphic to G,~ over K.  Consider the conjugate of 

T by 7-1: "r- l (T)(-  7-1T7) C R. Now ~-I(T) is a torus defined over L and 

contained in SoV, and hence is conjugate to So by an element g E (SoV)(L). 

Thus g-~-~(T)  = So Gm over K by Lemma (2.3). The map t ~ ( t ) ( -  

g-17-1tTg) is a homomorphism of T into So, and T = Gm by assumption and 

So = G m  by Lemma (2.3). But any homomorphism of Gm onto Gm is defined 

over K (in fact, over Q) which shows that for all t E T(K)  we have 

g-13,-1 
s = ( t )  = 6 ( s )  = ( 6 ( t ) )  = 

= = 

Therefore, 6(g)-16(7)- lTg C Z(So). By the choice of So it is clear that Z(So) C 

Q; but g, 6(g) E R(L) C Q. Therefore, 6(7)-17 C QZ(So)Q c Q which contra- 

dicts the choice of 7. This proves Lemma (2.4). 

(2.5) LEMMA: Given any integer N > O, let T(NOK)  = {t E T(OK);t  =_ 

1 (mod N)}. For t E T(NOK)  let 

w_(t) = {w • _v; w = 7 - 1 t T ( v )  - (6(7)- l ta(7))(v)  where v • E}. 

Here u_ is the Lie algebra of V (defined over K)  and 7-~tT(V) denotes the con- 

jugate of V by 7-1t7. Then w__(t) is a K-subspace of u_. Moreover, for a suitable 

choice t, w__(t) = H. 

Proo[: It is clear that w_(t) is a K-subspace of ~. Consider the map pr : R 

R / V  = So and define the map Cr: T ~ So by 

¢~(t) = pr(7-1 t - lva(v) - l t6 (7)+l  ). 

This map cannot be trivial, because that would mean that the map t ~ pr(~,-ltT) 

from T onto So is defined over K, but T, being anisotropic, cannot have nontrivial 

K-homomorphisms onto So = Gm. 
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CLAIM: We can pick t E T(NOK) of infinite order such that ¢v(t) # {1}. 

If N is divisible by sufficiently many primes, then J(NOK) is torsion free. 

Therefore, we need only prove that T(NOK) is a compact discrete subgroup of 

T(K ®Q R ) ,  by (2.4) and the Godment criterion (see [1]). Since T ~ Gm over 

K, we need only show that T(OK) is infinite. 

Since So and T are conjugate by ~, E G(L), it follows that So(L) ~- T(L) and 

that T is split over L, and is one-dimensional. It is thus clear that 

T C RL/K(Gm). Since T is an isotropic over K by (2.4), we have: T = 

Ker(Norm: RL/K(Gm) --+ Gin) where Norm is the Norm mapping of L over 

K. 

Since L / K  is a real extension, 

[RL/K(Gm)](K ® R) = Gm(L ®O R) 

= [ I ( c *  × c ' )  × l-[(R* × a*) ,  
W V 

w a complex place of K and v a real place of K. 

This shows that T(K ® R) is noncompact, since 

C* T(K ® R) = IIv complex >< rIv reala* 

where v runs through the archimedean places of K i.e. T(OK) is infinite and is 

hence Zarishi dense in T. The claim follows. Fix this t. Define Mo as the K- 

subgroup generated by the element 7-1t-17a(7)-lta(7) in R = SoV. Then M0 

projects nontrivially onto So under pr. We claim that w_(t) = _v for this choice of t. 

Suppose not. Then there exist v • _u- {0} such that 7-1tT(v) = a(7)-lta(7)(v) 

and therefore M0 fixes the vector v. Since M0 projects nontrivially onto So, there 

exists a torus in M0 which is conjugate to So. Therefore So fixes a conjugate of 

v in _u. But, by Lemma (2.3), So does not fix any vector in _v - {0}. This shows 

that w__(t) = _v and the lemma is proved. 

We now complete the proof of Proposition (2.1). 

CLAIM: There exists an integer C > O, t • T(COK) such that for the choice of 

? as above, the following holds (the equalities are in the sense of (1.3)): 

( exp exp [.(COK)] > exp [._(COL)] V(OL) 

where expL: v_ - ,  V denotes the exponential map and (A, B) denote the group 

generated by A and B. 
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On the other hand, 

F ~- (exp [7-1tTE(COg)], exp [E(COK)]) 

since "7 • F , t  • T(COK) C F, exp [~_(COK)] = V(OK) -~ r .  This shows that  

F ~ V(OL) and by Lemma (2.2) F ~ H(OL). We have thus proved Proposition 

(2.1). 

Proof of Theorem 2: We have already seen, from Theorem 1 and (1.3), that  if F 

is contained in an arithmetic lattice A -- A x A, then the comments in (1.4) show 

that  F = A and is a lattice. If, as in (1.4), we have F C 7r x 7r(H(OL)) where 

L / K  is a real quadratic extension, then A = 7r[H(Og)]; since G / A  is assumed 

to be non-compact, by [1] H is isotropic over K and therefore Theorem 1 applies, 

to show that  F = A, i.e., A is indeed a lattice in (G x G). This completes the 

proof. 
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